On Linear Diophantine Equations and Fibonacci Numbers
نویسندگان
چکیده
منابع مشابه
Diophantine quadruples and Fibonacci numbers
A Diophantine m-tuple is a set of m positive integers with the property that product of any two of its distinct elements is one less then a square. In this survey we describe some problems and results concerning Diophantine m-tuples and their connections with Fibonacci numbers.
متن کاملOn Diophantine Quadruples of Fibonacci Numbers
We show that there are only finitely many Diophantine quadruples, that is, sets of four positive integers {a1, a2, a3, a4} such that aiaj +1 is a square for all 1 ≤ i < j ≤ 4, consisting of Fibonacci numbers.
متن کاملDiophantine Equations and Class Numbers
The goals of this paper are to provide: (I ) sufficient conditions, based on the solvability of certain diophantine equations, for the non-triviality of the dass numbers of certain real quadratic fields; (2) sufficient conditions for the divisibility of the class numbers of certain imaginary quadratic fields by a given integer; and (3) necessary and sufficient conditions for an algebraic intege...
متن کاملDiophantine Equations Related with Linear Binary Recurrences
In this paper we find all solutions of four kinds of the Diophantine equations begin{equation*} ~x^{2}pm V_{t}xy-y^{2}pm x=0text{ and}~x^{2}pm V_{t}xy-y^{2}pm y=0, end{equation*}% for an odd number $t$, and, begin{equation*} ~x^{2}pm V_{t}xy+y^{2}-x=0text{ and}text{ }x^{2}pm V_{t}xy+y^{2}-y=0, end{equation*}% for an even number $t$, where $V_{n}$ is a generalized Lucas number. This pape...
متن کاملInteger Solutions of Some Diophantine Equations via Fibonacci and Lucas Numbers
We study the problem of finding all integer solutions of the Diophantine equations x2 − 5Fnxy − 5 (−1) y2 = ±Ln, x2 − Lnxy + (−1) y2 = ±5F 2 n , and x2 − Lnxy + (−1) y2 = ±F 2 n . Using these equations, we also explore all integer solutions of some other Diophantine equations.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Number Theory
سال: 1993
ISSN: 0022-314X
DOI: 10.1006/jnth.1993.1056